

Profiling of Microbiota in Sport-Drink and Orange Juice **After Drinking Directly From Plastic Bottles**

Miho Kawachi, Anna Wakui, Jumpei Washio*, Yuki Abiko*, Gen Mayanagi*, Nobuhiro Takahashi*, Takuichi Sato

Division of Clinical Chemistry, Niigata University Graduate School of Health Sciences, Niigata, Japan

* Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Sendai, Japan

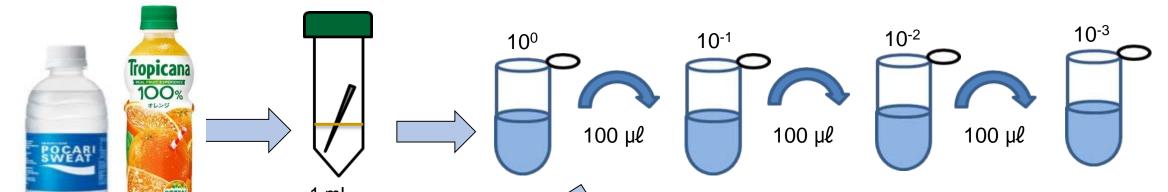
Introduction

Plastic Bottles

- Regarding remaining beverages in plastic bottles
- \rightarrow Limited scientific information on the concentration and composition of bacteria in the remaining drinks is available.
- It is recommended that any remaining beverage in plastic bottles should be discarded after drinking. However, some consumers may be inclined to store or leave the remaining beverages in plastic bottles after drinking and then drink them later, especially in the summertime or in hot weather to prevent dehydration.
- To understand the characteristics of the bacteria in the remaining beverages in plastic bottles after drinking directly from the bottles, analyses of the bacteria at the mouth of bottles and in the remaining beverages in the bottles both immediately after drinking from the bottles and after storage at 37°C for 24 h were performed.

It is suspected that oral bacteria can be transferred to drinks in plastic bottles

Materials & Methods

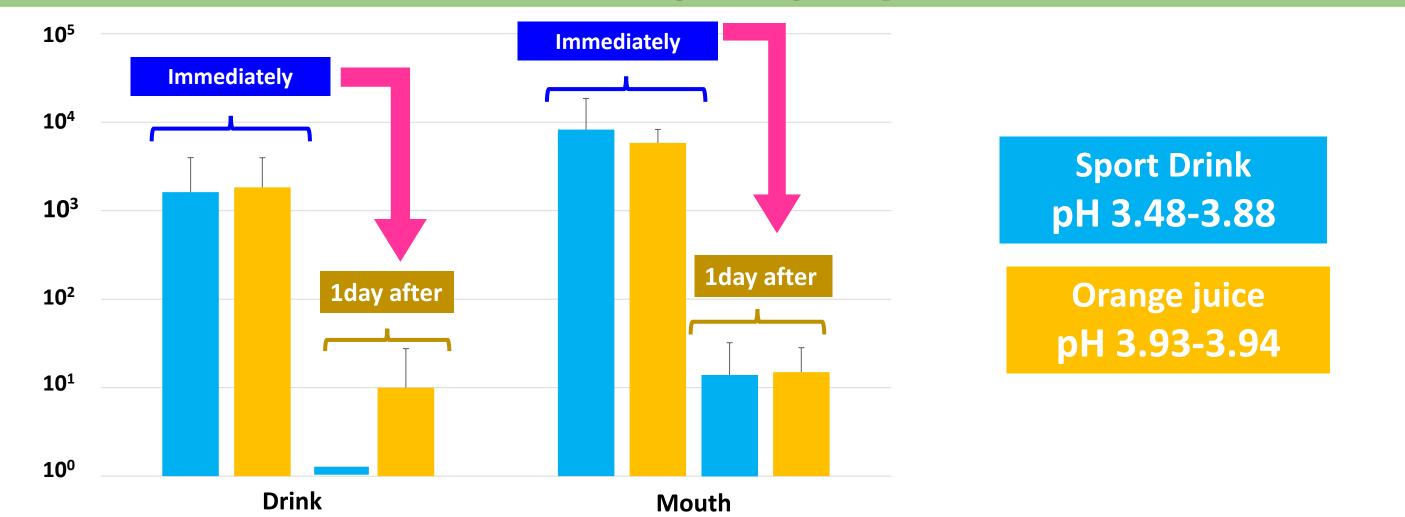

I Subjects

After obtaining informed consent, 9 healthy human subjects (14-23 years old) were asked to drink approximately 100mLof a sport-drink or orange juice from a plastic bottle.

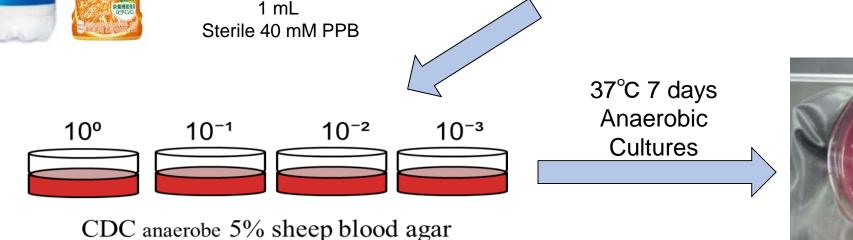
I Samples

The mouth of the bottles were swabbed with sterile cotton. After suspended and vortexed in a buffer, serialdiluted samples were inoculated onto CDC blood agar plates, and incubated anaerobically and aerobically at 37°C.

Samples of the remaining drinks immediately after drinking and after storage 37°C for 24h were also cultured. Baby-Drinks after drinking (immediately after and 3-h later) were also inoculated. Salivary samples from each subject were also cultured.


and can multiply in the bottle after drinking

To elucidate the effect of bacteria on drinks after drinking,


The present study examined that **(1)**The transfer of oral bacteria **2** Their multiplication and survival in drinks

Tropican 100% WEAT In this study, we used Sport-drink and Orange juice \rightarrow

Results 1: Bacterial amounts (CFU) & pH

The mean amounts of bacteria were (1.6 \pm 2.3) \times 10³ CFU/mL and (2.9 \pm 3.3) \times 10³ CFU/mL from the remaining sport-drink and orange juice immediately after drinking, respectively. In contrast, (2.5 \pm 5.5) \times 10⁴ CFU/mL and (5.8 \pm 2.4) \times 10³ CFU/mL were recovered at the mouth of the bottles of a sport drink and orange juice immediately after drinking, respectively. Little bacteria were recovered from

PCR-PFLP

Genomic DNA was then extracted from single colonies using InstaGene Matrix kit (Bio-Rad Laboratories). The 16S rRNA gene were individually digested with Hpa II, and the digested products were separated on 2% agarose gels. Isolates were identified according to the PCR-RFLP analysis and sequence.

Stained with

1	ttttgagttt	gatcctggct	caggacgaac	gctggcggcg	tgcctaatac	atgcaagtag
61	aacgctgaag	gaggagcttg	cttctccgga	tgagttgcga	acgggtgagt	aacgcgtagg
		ggtagcgggg				
181	gatgttgcat	gacatttgct	taaaaggtgc	aattgcatca	ctaccagatg	gacctgcgtt
		gttggtgggg				
301	gggtgatcgg	ccacactggg	actgagacac	ggcccagact	cctacgggag	gcagcagtag
361	ggaatcttcg	gcaatggacg	gaagtctgac	cgagcaacgc	cgcgtgagtg	aagaaggttt
421	tcggatcgta	aagctctgtt	gtaagagaag	aacgagtgtg	agagtggaaa	gttcacactg
481	tgacggtatc	ttaccagaaa	gggacggcta	actacgtgcc	agcagccgcg	gtaatacgta
541	ggtcccgagc	gttgt <mark>ccgg</mark> a	tttattgggc	gtaaagcgag	cgcaggcggt	tagataagtc
601	tgaagttaaa	ggctgtggct	taaccatagt	acgctttgga	aactgtttaa	cttgagtgca
661	agaggggaga	gtggaattcc	atgtgtagcg	gtgaaatgcg	tagatatatg	gaggaacacc
721	ggtggcgaaa	gcggctctct	ggcttgtaac	tgacgctgag	gctcgaaagc	gtggggagca
781	aacaggatta	gataccctgg	tagtccacgc	gtalacgat	gagtgctagg	tgttagaccc
841	ttt <mark>ccgg</mark> ggt	ttagtgccgc	agctaacgca	gcactc	cgcctgggga	gtacgaccgc
		ctcaaaggaa				
961	ttcgaagcaa	cgcgaagaac	cttaccaggt	tt ga at co	ctctgaccgc	tctagagata
1021	gagttttcct	tcgggacaga	ggtgaca	gtgcatggt	tgtcgtcagc	tcgtgtcgtg
1081	agatgttggg	ttaagtcccg	caacgageg	aacccctatt	gttagttgcc	atcatttagt
1141	tgggcactct	agcgagactg	ccggtaat a	a <mark>ccgg</mark> aggaa	ggtggggatg	acgtcaaatc
1201	atcatgcccc	ttatgacctg	ggctacacac	gtgctacaat	ggctggtaca	acgagtcgca
1261	ag <mark>ccgg</mark> tgac	ggcaagctaa	tctcttaaag	ccagtctcag	ttcggattgt	aggctgcaac
1321	tcgcctacat	gaagtcggaa	tcgctagtaa	tcgcggatca	gcacgccgcg	gtgaatacgt
1381	tc <mark>ccgg</mark> gcct	tgtacacacc	gcccgtcaca	ccacgagagt	ttgtaacacc	cgaagtcggt
1441	gaggtaacct	tttaggagcc	agccgcctaa	ggtgggatag	atgattgggg	tgaagtcgta
1501	acaagtcagc	cgtttgggaa				
	16				4 500	hn)

16S rRNA Gene (ca. 1,500bp)

Program

Initial heat activation Denaturation Annealing Extension	55°C	5min 1min 1min - 30cycles 1.5min -	
Final extension	72°C	10min	

27F: 5'- AGA GTT TGA TCM TGG CTC AG -3' 1492R: 5'- TAC GGY TAC CTT GTT ACG ACT T-3'

Results 2: Bacterial Compositions

	Sport drink				O	range	juice	uice		
	Drink (n=9)	C	Mouth (n=6)		Drink (n=8)		Mouth (n=8)		Saliva (n=11)	
Total	349		228		309		294		633	
Anaerobes	44	12.6%	33	14.5%	59	12.9%	40	11.6%	118	18.6%
Veillonella	9	2.6%	14	6.1%	33	10.7%	26	8.8%	54	8.5%
Prevotella	9	2.6%			2	0.6%	2	0.7%	29	4.6%
Fusobacterium	5	1.4%					1	0.3%	7	1.1%
Megasphaera	2	0.6%							1	0.2%
Porphyromonas	1	0.3%	4	1.8%			2	0.7%	7	1.1%
Oribacterium	1	0.3%								
Selenomonas	4	1.1%			1	0.3%				
Leptotrichia	1	0.3%							1	0.2%
Peptostreptococcus					2	0.6%				
Solobacterium			1	0.4%			2	0.7%	3	0.5%
Eubacterium					2	0.6%	1	0.3%	5	0.8%
Propionibacterium									7	1.1%
Atopobium									4	0.6%
Finegoldia									2	0.3%
Aerotorelant anaero	bes									

Cutibacterium 12 3.4% 6.1% 19 6.1% 1.7% 0.2% 14 5

Streptococcus (55.9%), Actinomyces (10.3%), Neisseria (6.3%), Rothia (5.2%), Veillonalla and *Prevotella* (5.4%) were predominant in the remaining Sport drink (n=9).

Streptococcus (38.2%), Actinomyces (23.3%), Neisseria (12.3%) and Veillonalla (6.1%) were predominant at the mouth of Sport drink (n=6).

Streptococcus (34.6%), Actinomyces (26.9%), Veillonalla (8.8%) and Rothia (5.4%) were predominant in the remaining Orange juice (n=8).

✓ Streptococcus (36.1%), Actinomyces (23.8%) and Veillonalla (6.1%) were predominant at the mouth of Orange juice (n=8).

From saliva, Streptococcus (48.3%), Schaalia (10.0%), Actinomyces (4.7%) and Neisseria (3.8%) were detected as predominant species (n=11).

These results indicate that oral bacteria flow into the remaining drinks through the mouth of plastic bottles.

Discussion

•More than 10³ cells/mL of oral bacteria, including Streptococcus, Actinomyces, *Neisseria* and *Veillonella*, were found in the remaining beverages in the bottles immediately after drinking and at the mouth of plastic bottles.

Facultative anaerobes	290	83.1%	182	79.8%	233	75.4%	231	77.9%	475	75.0%
Streptococcus	195	55.9%	87	38.2%	107	34.6%	106	36.1%	306	48.3%
Actinomyces	36	10.3%	53	23.2%	83	26.9%	70	23.8%	30	4.7%
Neisseria	22	6.3%	28	12.3%	12	3.9%	6	2.0%	24	3.8%
Rothia	18	5.2%			9	2.9%	16	5.4%	19	3.0%
Schaalia	7	2.0%	6	2.6%	6	1.9%	10	3.4%	63	10.0%
Gemella	7	2.0%	4	1.8%	7	2.3%	6	2.0%	20	3.2%
Staphylococcus	3	0.9%	4	1.8%	6	1.9%	12	4.1%	6	0.9%
Corynebacterium					1	0.3%	3	1.0%	2	0.3%
Capnocytophaga					2	0.6%			5	0.8%
Campylobacter	2	0.6%								

- •The bacterial levels decreased 100-fold after storage at 37°C for 24 h both in the remaining beverages and at the mouth of plastic bottles, likely due to the lower pH (less than pH 4) of sport drink and orange juice.
- The findings of the present study suggest that the remaining beverages (less than pH 4, such as sport drink and orange juice) may be preserved safely in a room temperature for a specified amount of time.