P7-1

A novel ECC-related bacterium, Scardovia wiggsiae, has a unique carbohydrate metabolism with fluoride resistance

Mai Kameda^{1,2}, Yuki Abiko², Jumpei Washio², Nobuhiro Takahashi²

Division of Orthodontics and Dentofacial Orthopaedics, Tohoku Univ. Grad. Sch. Dent. ² Division of Oral Ecology and Biochemistry, Tohoku Univ. Grad. Sch. Dent.

Introduction

- A new bacterial species, Scardovia wiggsiae has been detected frequently from early childhood caries (ECC) and white spot lesions during adolescence.
- Genus Scardovia is known to possess a unique metabolic pathway, the frcutose-6phosphate shunt (F6PPK-shunt), which might give S.wiggsiae a metabolic characteristic in the aspect of acid production, fluoride sensitivity and cariogenic potential.
- The purpose of this study is reveal the following :
- 1. The acid production by carbohydrate metabolism
- 2. The fluoride sensitivity of carbohydrate metabolism

Cariogenic potential of S. wiggsiae

Methods

Bacteria strains: Scardovia wiggsiae C1A-55, and Streptococcus mutans NCTC10449

Results

1. The acid production by carbohydrate metabolism

2. The effect of fluoride for carbohydrate metabolism

The acid production of both bacteria was inhibited by fluoride (Fig. 2-1, 2-2). \bullet

- Both S. wiggsiae and S. mutans continued to produce acid even at pH 5.5 (Fig. 1-1, 1-2).
- S. wiggsiae produced acetate from glucose at the ratio of 8 : 2 : 0.
- S. *mutans* produced lactate mainly.

•However, S. wiggsiae was 3.4 times more resistant to fluoride at pH 7.0 and 5 times at pH5.5 than *S. mutans* (based on IC_{50} of fluoride) (Fig. 2-3).

To identify inhibitory steps by fluoride, we obtained the metabolome profiles by CE-TOFMS and reconstructed it to the metabolic map (Fig. 3, 4).

3. Metabolome profile and metabolic pathway

Summary and Conclusion

- 1. F6PPK-shunt allowed S. wiggsiae to predominantly produce acetate from sugars, and that its acid production was resistant to fluoride.
- 2. The enolase activity of *S. wiggsiae* was much

Fluoride

Scardovia

Glucose

F6PPK-shunt

ECC

The present study revealed that a novel caries-associated bacterium S. wiggsiae has unique metabolic properties, which could give a high acidogenic potential and a high fluoride resistance.

Acknowledgments:

This study was supported by Grant-in-Aid for Scientific Research (B) No. 26293439 and Grant-in-Aid for Young Scientists (B) No. 15K20635, JSPS, Japan.

